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HPC Workflows a’ Comin’ *
CJ Newburn, HPC Lead for NV Com g

P3HPC Forum, Sep 2, 2020 Ny



- g e A new era: workloads — workflows

" HPC x Al

e HPC at the Edge

. » e Towards a metaflow and common infrastructure
e Where, what, and how
e The 3 Ps

An invitation to collaborate




Workloads: First there was simple HPC

Compute, ]

FIATIDEA



Workflows: Then there were mashups - light, accurate, realtime

Complex inter-relationships of stages vs. one and done
Compute, ]
Sensor,

Process )¢ ==--=- - —-——— - - — - ——————————
control

Data
Analytics
Postprocess

Data
Analytics
Preprocess

__________________
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— Simulate
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Common interests for workflows

« HPC practitioners are being presented with a new set work workteadflows
of HPC, data analytics, deep learning, visualization

Data +
Common data and are key
Moving toward higher-level , reusable infrastructure

of numerical data into consumable insight (vis) with automated action
, management, containers
for bottlenecks and continuous improvement

Performance, portability, and productivity all have a part to play
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Fully-integrated Al-assisted HPC simulation

DeepDriveMD: protein folding, docking

. ATOM: molecular design tools

ProtTrans: computational biology ~ natural language processing (link)
Physics-inspired DL to characterize black hole mergers (link)
ECMWF: Weather modeling
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https://www.biorxiv.org/content/10.1101/2020.07.12.199554v1
https://www.sciencedirect.com/science/article/pii/S0370269320304317?via%3Dihub
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ATOM design tools will be applied to propose UL_

new improved molecular structures

26 M compounds
Parallel Molecular Docking Courtesy of Brian Van Essen, LLNL

~1% of compounds . . . . .
ML &MR,VGBSAP Rescoring Machine Learning/Docking Pipeline

~1000 Compounds Efficac

MD simulations

Working Developabili
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Library

Design
Criteria

4 Molecular
Optimizer Preparing to order first
' 100 molecules
Decoder ' o
\__ -/ Encode
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Generative network trained Experimental binding assay readout

on potent molecules



HPC at the Edge usage models

o Lightsourcesat LBNL, BNL, ANL, SLAC
ORNL: CNMS microscopy, FedSci, MANTiD, Manufacturing Design Facility

. VA Tech: Microtomography
e Health: NVIDIA Clara
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Courtesy of Hari Krishnan and Alex Hexemer, LBNL.ALS

Orchestration,
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Representations:
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MsgPack — Arrow?

scattering, micro-diffraction, hybrid.
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Toward shared DoE infrastructure

Build once, use everywhere
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Toward commonality and integration on the data plane

A Systemic Approach to Facilitating Reproducibility via Federated, End-to-End Data Management
Dale Stansberry, Suhas Somnath, Gregory Shutt, and Mallikarjun Shankar @ ORNL, Advanced Data and Workflows Group

Inadequate metadata for Al
Containers
Orchestration/security
Higher-level APls
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Courtesy of Rama Vasudevan, ORNL.CNMS
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https://pycroscopy.github.io/pyUSID/about.html

FedSci: SW Framework for Federated Science Instruments

T. Naughton, S. Hitefield, L. Sorrillo, N. Rao, J. Kohl, W. Elwasif, J-C. Bilheux, H. Bilheux,
S. Boehm, J. Kincl, S. Sen and N. Imam @ ORNL

Federation
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MANTiD @ ORNL

“Performance improvements on SNS and HFIR instrument data reduction workflows using Mantid”
William F Godoy, Pete Peterson, Steven Hahn, John Hetrick, Jay Billings @ ORNL

Perf: focused on |10

Mashup of HPC, analytics, DL, vis

Common data rep, interop

Higher-level abstractions, buildingblks scientific Campaign Data Lifecycle
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Micro-tomography @ VA Tech

Toward Real-Time Analysis of Synchrotron Micro-Tomography Data: Accelerating Experimental Workflows
with Al and HPC: J McClure, J Yin, R Armstrong, K Maheshwari, S Wilkinson, L Vlcek, Y Wang, M Berrill, M

Rivers
Perf: data bottleneck
Mashup, vis, metadata

Experimental Facility

........... -




TOrchestration, NVIDIA Clara for Healthcare
monitoring: EGX
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New workloads — workflows for a new era

Mash-up of HPC, DL, DA, Vis in accelerated systems vs. just CPUs
Beginning to explore rich interaction among stages

Sensor,
process
control

Data Data

Analytics
Preprocess Postprocess

Analytics




Interaction among stages: Sensors+HPC+DA+Vis

Combine sensor data with simulation, analyze, visualize

Data
Analytics
Preprocess

_____________________________________ »| Data
| Analytics
”| Postprocess

———————————————————

Stage

___________________
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candidate

Courtesy Thorsten Kurth. Exploratory effort with ECMWF
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https://gmao.gsfc.nasa.gov/events/adjoint_workshop-8/present/Sunday/Kepert1.pdf

Interaction among stages: Sensors+HPC+DL/ML+DA+Vis

Augment model training with sensor data that corrects simulation

Data
Analytics
Postprocess

Data
Analytics
Preprocess

22 ST PAIDEA



Interaction among stages:
Sensors+HPC+DL/ML+DA+Vis+Ctrl

Use of model to shorten feedback loop: correct setup, increase sampling of what’s unexpected

Sensor,
ProcesS )€ ===—- - - - ———m—— -
control

Data
Analytics
Postprocess

Data
Analytics
Preprocess
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Common building blocks in various stages
Build up perf-tuned, portable/HLL building blocks to enhance productivity
Aign ) )

Annotate .
Denoise Classify
Extract Motion detect Control

Ope rators . Reconstruct Detect

Register Measure
Segment
Transform Segment
Human vis
Transpose
Sensor, \ Automatic vis / \ / \ /

process )¢=-=-—--------S=========--——--—-—-—----- |
control

> Data
Analytics
Postprocess

Data
Analytics
Preprocess
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should the action be?

e Near the edge
e C(Create higher-quality data to send to datacenter at lower bandwidth
Data may have locality at the edge, e.g. industrial control
Local learning, local activities related to federated learning
Inference, and an increasing fraction of training
. Fungible - either DC or edge (portable)
Computing platform is common between sensors and base station/datacenter
. In the base station or datacenter (if security allows)
Very-large-scale strong scaling, not power constrained
Persistent, longitudinal data
Complex learning, in service of transfer learning
Human-experimental interaction
Hub for federated learning

2 AVIDEA



Converting numerical data into insightful

. Trends

Sensor fusion of multi-modal sensor input, e.g. pressure, vibration, IR, temperature

Make data more accessible to humans or to Al networks

e Augmented input: Fake info to support perception, e.g. color, lens flare
« Simulation results comparisons become “observables”

. Challenges
Interoperability between data representations, tool diversity
Life-like cinema comes to science: Omniverse, Paraview, Houdini; auto-driving
. Where can you “in situ” it?
Edge - non-human agent is automated to reduce latency, effort
Datacenter - refined human perception: insight, education, marketing/Hollywood

2 AVIDEA



Workload: run ‘til it’s done
Workflow: tune during the run
Needs

Orchestration, monitoring, and resilience

Observability/monitoring,
(health/effectiveness) analysis, vis
During the run, from cloud

adaptively resched, re-orchestrate I

Recover from transient and EGX Stack

permanent failures, disconnection wbernetes curity Networking

Easy, secure, automated update

K8s device plugins, GPU operators e S | [ e—T

Reference EGX

“Orchestration for the Edge” at
ISC20.HPCW

27 ST PAIDEA


https://www.nvidia.com/en-us/data-center/products/egx-edge-computing/
https://www.youtube.com/watch?v=KXZzfcWbR4I&list=PLfE3_wJGw9KTx8t6byn5bCWpk4L5bRORY&index=42
https://hpcw.github.io/

Performance, portability, productivity

Monitoring and continuous improvement of all of these

e Performance
e Data movement, access, management - MagnumlO for multi-GPU, multi-node

Spanning nodes, processes, containers - best practices

Representations - numpy/cupy arrays, Arrow, USD, pyUSID, MsgPack, DICOM, NIfT]
. Portability

CPU and GPU versions of building blocks

Relocatable work: near the edge or back in the data center
. Productivity

Building blocks and higher-level abstractions, C++ and Python

28 T NAIDA


https://www.nvidia.com/en-us/data-center/magnum-io/
https://numpy.org/doc/stable/reference/generated/numpy.array.html
https://docs.cupy.dev/en/stable/reference/generated/cupy.array.html
https://arrow.apache.org/
https://graphics.pixar.com/usd/docs/index.html
https://pycroscopy.github.io/pyUSID/about.html
https://pypi.org/project/msgpack/
https://www.dicomlibrary.com/dicom/
https://nifti.nimh.nih.gov/

Call to action

o Workflowsvs. workloads: mashups, interoperability, data representation,
metadata, orchestration/containers/monitoring, abstractions, projections/vis

Performance: Data movement, access, management, representation
Portability: CPU/GPU, shift work/data/vis to where it makes most sense

Productivity: increasing communal pool of building blocks on common platform

Share workflows, help find commonality, build platform-level infrastructure

2 AVIDEA
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